Skip to main content

How to find All Disappeared Numbers in an Java Array | Java LeetCode Solution

Find All Numbers that are not present in Java Array from 1 to n

Find All Numbers Disappeared in java Array | leetcode problem

Problem Description :

Given an array nums of n integers where nums[i] is in the range [1, n], return an array of all the integers in the range [1, n] that do not appear in nums array.

Example 1 :

Input: nums = [1, 3, 5, 1, 3]
Output: [2, 4]

Example 2 :

Input: nums = [2, 4, 2, 4]
Output: [1, 3]

Example 3 :

Input: nums = [4, 3, 2, 7, 8, 2, 3, 1]
Output: [5, 6]

Example 4 :

Input: nums = [1, 1]
Output: [2]

In given problem, we have to return List of Integers that are not present in given array range [1 to n].

Lets see solution and its explanation step by step.

Solution 1 : Using in-place array (Without use if extra space)

import java.util.ArrayList;
import java.util.List; 

class Solution {
    public List<Integer> findDisappearedNumbers(int[] nums) {
        
        List<Integer> list = new ArrayList<Integer>();

        for (int i = 0; i < nums.length; i++) {

            // Get current value-1
            int numberIndex = Math.abs(nums[i]) - 1;

            // change positive value to negative
            if (nums[numberIndex] > 0) {
                nums[numberIndex] = -nums[numberIndex];
            }
        }

        for (int i = 0; i < nums.length; i++) {
            if (nums[i] > 0) {
                list.add(i + 1);
            }
        }
        return list;
    }
}

Solution explanation :

  • Traverse through given array from left to right.
  • Get current index value. Math.abs() used for get negative integers to positive integers. Subtract number by 1. (Array index start from 0 and we have to check from 1 to n).
  • Check numberIndex is greater or not. If it is greater than 0, change that value from positive to negative.
  • In second for loop, add those numbers into list that are greater than 0.
  • return list of integers.

Output explanation :

nums = [1, 3, 5, 1, 3]

  •  i = 0
    • Get positive value | numberIndex = Math.abs(nums[i]) | 1
    • Subtract -1 from value | 1 - 1 = 0
    • nums[numberIndex] > 0 | 1 > 0 becomes true.
      • nums[numberIndex] = -nums[numberIndex];
      • Change 1 to -1 | 1 = -1 

  • i = 1, nums = [-1, 3, 5, 1, 3] 
    • 3 - 1 = 2
    • 5 > 0 becomes true.
      • 5 = -5

  • i = 2, nums = [-1, 3, -5, 1, 3]
    • 5 - 1 = 4
    • 3 > 0 becomes true.
      • 3 = -3

  • i = 3, nums = [-1, 3, -5, 1, -3]
    • 1 - 1 = 0
    • -1 > 0 becomes false

  • i = 4, nums = [-1, 3, -5, 1, -3]
    • 3 - 1 = 2
    • -5 > 0 becomes false

  • Traversal of first for loop is done. nums = [-1, 3, -5, 1, -3]

  • Second For loop
  • i = 0, list = []
    • nums[i] > 0 | -1 > 0 becomes false

  • i  = 1, list = []
    • 3 > 0 becomes true
      • list.add(i + 1) |  list = [2]

  • i = 2, list = [2]
    • -5 > 0 becomes false

  • i  = 3, list = [2]
    • 1 > 0 becomes true
      • list.add(i + 1) |  list = [2, 4]

  • i = 4, list = [2, 4]
    • -5 > 0 becomes false

  • Traversal of second for loop is done.
  • return list = [2, 4] 

Lets see second solution using extra space.

Solution 2 : Using extra space

import java.util.ArrayList;
import java.util.List;

class Solution {

    public List<Integer> findDisappearedNumbers(int[] nums) {
        
        List<Integer> list = new ArrayList();

        int[] duplicateArray = new int[nums.length + 1];
        
        for (int n : nums) {
            duplicateArray[n]++;
        }
        
        for (int i = 1; i < duplicateArray.length; i++) {
            if (duplicateArray[i] == 0) {
                list.add(i);
            }
        }
        
        return list;
    }
}

Solution explanation :

  • Declare new array by +1 length of given nums array.
  • Traverse through nums array and increment given index where current n is located in duplicateArray.
  • Traverse through duplicateArray array from 1 to array length and check if any index contains 0 then add in list.
  • Return list.

Output explanation :

nums = [4, 3, 2, 7, 8, 2, 3, 1]

  • duplicateArray = [0, 0, 0, 0, 0, 0, 0, 0, 0]
  • for each loop
  • n = 4
    • duplicateArray = [0, 0, 0, 0, 1, 0, 0, 0, 0]
  • n = 3
    • duplicateArray = [0, 0, 0, 1, 1, 0, 0, 0, 0]
  • n = 2
    • duplicateArray = [0, 0, 1, 1, 1, 0, 0, 0, 0]
  • n = 7
    • duplicateArray = [0, 0, 1, 1, 1, 0, 0, 1, 0]
  • n = 8
    • duplicateArray = [0, 0, 1, 1, 1, 0, 0, 1, 1]
  • n = 2
    • duplicateArray = [0, 0, 2, 1, 1, 0, 0, 1, 1]
  • n = 3
    • duplicateArray = [0, 0, 2, 2, 1, 0, 0, 1, 1]
  • n = 1
    • duplicateArray = [0, 1, 2, 2, 1, 0, 0, 1, 1]
  • duplicateArray = [0, 1, 2, 2, 1, 0, 0, 1, 1]

  • For loop (Start from 1), duplicateArray = [0, 1, 2, 2, 1, 0, 0, 1, 1]
  • i = 1,
    • duplicateArray[1] == 0 | 1 == 0 becomes false

  • i = 2, list = []
    • 2 == 0 becomes false

  • i = 3, list = []
    • 2 == 0 becomes false

  • i = 4, list = []
    • 1 == 0 becomes false

  • i = 5, list = []
    • 0 == 0 becomes true
      • list.add(i) | list = [5]

  • i = 6, list = [5]
    • 0 == 0 becomes true
      • list.add(i) | list = [5, 6]

  • i = 7, list = [5, 6]
    • 1 == 0 becomes false

  • i = 8, list = [5, 6]
    • 1 == 0 becomes false

  • Return list = [5, 6] 

Lets see another solution using java 8 approach

Solution 3 : Using java 8

import java.util.Arrays;
import java.util.Set;
import java.util.stream.Collectors;
import java.util.stream.IntStream;

class Solution {
  
        public List<Integer> findDisappearedNumbers(int[] nums) {
             
        Set<Integer> set = Arrays.stream(nums).boxed().collect(Collectors.toSet());

        return IntStream.range(1, nums.length + 1)
                    .filter(number -> !set.contains(number))
                    .boxed()
                    .collect(Collectors.toList());

    }
}

Solution explanation :

  • Convert array to set. set deos not store duplicate values. 
  • .boxed() method converts a stream of objects to a collection.
  • IntStream.range returns a sequential ordered IntStream from startInclusive to endExclusive by an incremental step of 1 (here we are range from 1 to nums array length + 1).
  • using Java 8 stream filter() method, we are filtering value that are not present in set and collect using Collectors.toList() to list and return list.
  • Learn about java 8 collect method.


Happy coding.

Recommended articles :


Comments

Popular posts from this blog

Plus Minus HackerRank Solution in Java | Programming Blog

Java Solution for HackerRank Plus Minus Problem Given an array of integers, calculate the ratios of its elements that are positive , negative , and zero . Print the decimal value of each fraction on a new line with 6 places after the decimal. Example 1 : array = [1, 1, 0, -1, -1] There are N = 5 elements, two positive, two negative and one zero. Their ratios are 2/5 = 0.400000, 2/5 = 0.400000 and 1/5 = 0.200000. Results are printed as:  0.400000 0.400000 0.200000 proportion of positive values proportion of negative values proportion of zeros Example 2 : array = [-4, 3, -9, 0, 4, 1]  There are 3 positive numbers, 2 negative numbers, and 1 zero in array. Following is answer : 3/6 = 0.500000 2/6 = 0.333333 1/6 = 0.166667 Lets see solution Solution 1 import java.io.*; import java.math.*; import java.security.*; import java.text.*; import java.util.*; import java.util.concurrent.*; import java.util.function.*; import java.util.regex.*; import java.util.stream.*; import static java.util.st

Flipping the Matrix HackerRank Solution in Java with Explanation

Java Solution for Flipping the Matrix | Find Highest Sum of Upper-Left Quadrant of Matrix Problem Description : Sean invented a game involving a 2n * 2n matrix where each cell of the matrix contains an integer. He can reverse any of its rows or columns any number of times. The goal of the game is to maximize the sum of the elements in the n *n submatrix located in the upper-left quadrant of the matrix. Given the initial configurations for q matrices, help Sean reverse the rows and columns of each matrix in the best possible way so that the sum of the elements in the matrix's upper-left quadrant is maximal.  Input : matrix = [[1, 2], [3, 4]] Output : 4 Input : matrix = [[112, 42, 83, 119], [56, 125, 56, 49], [15, 78, 101, 43], [62, 98, 114, 108]] Output : 119 + 114 + 56 + 125 = 414 Full Problem Description : Flipping the Matrix Problem Description   Here we can find solution using following pattern, So simply we have to find Max of same number of box like (1,1,1,1). And last