Skip to main content

Sherlock and Anagrams HackerRank solution in Java | Anagrams string in Java

Java solution for Sherlock and Anagrams Problem

Sherlock and Anagrams HackerRank Solution in  Java

Two strings are anagrams of each other if the letters of one string can be rearranged to form the other string. Given a string, find the number of pairs of substrings of the string that are anagrams of each other. 

Example 1 :

Input:

s = abba

Output :

4
The list of all anagrammatic pairs is [a, a], [ab, ba], [b, b] and [abb, bba] at positions [[0], [3]], [[0, 1], [2, 3]], [[1], [2]], [[0, 1, 2], [1, 2, 3]].

Example 2 :

s = abcd

No anagrammatic pairs exist in the second query as no character repeats.

In this problem, we have to find that given String is anagram or not. But we have to find in sub string. So lets see solution and its explanation.

import java.io.*;
import java.math.*;
import java.security.*;
import java.text.*;
import java.util.*;
import java.util.concurrent.*;
import java.util.function.*;
import java.util.regex.*;
import java.util.stream.*;
import static java.util.stream.Collectors.joining;
import static java.util.stream.Collectors.toList;
import java.util.Map.Entry;

class Result {

    public static int sherlockAndAnagrams(String s) {
        int pair = 0;
        Map<String, Integer> map = new HashMap<>();
        int currentPair = 1;
       
        while (currentPair != s.length()) {
            
            for (int i = 0; i < s.length(); i++) {
                
                if (( i+currentPair) <= s.length()) {
                    String subString = s.substring(i, i+currentPair);
                    char[] array = subString.toCharArray();
                    Arrays.sort(array);
                    String sorted = String.valueOf(array);
                    
                    if (map.containsKey(sorted)) {
                        map.put(sorted, map.get(sorted)+1);
                    } else {
                        map.put(sorted, 1);
                    }
                }
                
            }
            currentPair++;
        }
        
        for (Entry<String, Integer> data : map.entrySet()) {
            pair += data.getValue()*(data.getValue()-1) / 2;
        }
        return pair;
    }


}

public class Solution {
    public static void main(String[] args) throws IOException {
        BufferedReader bufferedReader = new BufferedReader(new InputStreamReader(System.in));
        BufferedWriter bufferedWriter = new BufferedWriter(new FileWriter(System.getenv("OUTPUT_PATH")));

        int q = Integer.parseInt(bufferedReader.readLine().trim());

        IntStream.range(0, q).forEach(qItr -> {
            try {
                String s = bufferedReader.readLine();

                int result = Result.sherlockAndAnagrams(s);

                bufferedWriter.write(String.valueOf(result));
                bufferedWriter.newLine();
            } catch (IOException ex) {
                throw new RuntimeException(ex);
            }
        });

        bufferedReader.close();
        bufferedWriter.close();
    }
}

Solution Explanation :

  • For solving this problem, we have to create pair of string from 1 to string length -1. ex, String = java so we have to create following pair and check if anagram is applicable or not.
    • pair of 1 character : [j, a], [j, v], [j, a], [a, v], [a, a], [v, a]
    • pair of 2 characters : [ja, av], [ja, va], [av, va]
    • pair of 3 characters : [jav, ava]  
  • Declare and Initialize HashMap<String, Integer>, So we can count pair. Declare two int variable pair and currentPair, initialize with 0 and 1.
  • Using while loop, we create pair of Characters until string length.
  • Traverse through 0 to string length.
    • Write if condition for checking our pair not cause StringIndexOutOfBoundsException.
      • Now we have getting our pair (substring).
      • Convert substring into character array, and sort character array, and then convert character array to String again.
      • Now check if map contains our pair (substring), then increment map value by 1 otherwise pair as new key and value as 1.
  • After completing put all pair in map, Loop through map and apply following formula for getting total pair.
  • pair += data.getValue()*(data.getValue()-1) / 2; 
  • Return pair.


Happy Coding. Happy Learning.

Other Hackerrank solutions in Java :

Comments

Popular posts from this blog

Plus Minus HackerRank Solution in Java | Programming Blog

Java Solution for HackerRank Plus Minus Problem Given an array of integers, calculate the ratios of its elements that are positive , negative , and zero . Print the decimal value of each fraction on a new line with 6 places after the decimal. Example 1 : array = [1, 1, 0, -1, -1] There are N = 5 elements, two positive, two negative and one zero. Their ratios are 2/5 = 0.400000, 2/5 = 0.400000 and 1/5 = 0.200000. Results are printed as:  0.400000 0.400000 0.200000 proportion of positive values proportion of negative values proportion of zeros Example 2 : array = [-4, 3, -9, 0, 4, 1]  There are 3 positive numbers, 2 negative numbers, and 1 zero in array. Following is answer : 3/6 = 0.500000 2/6 = 0.333333 1/6 = 0.166667 Lets see solution Solution 1 import java.io.*; import java.math.*; import java.security.*; import java.text.*; import java.util.*; import java.util.concurrent.*; import java.util.function.*; import java.util.regex.*; import java.util.stream.*; import static java.util.st

Flipping the Matrix HackerRank Solution in Java with Explanation

Java Solution for Flipping the Matrix | Find Highest Sum of Upper-Left Quadrant of Matrix Problem Description : Sean invented a game involving a 2n * 2n matrix where each cell of the matrix contains an integer. He can reverse any of its rows or columns any number of times. The goal of the game is to maximize the sum of the elements in the n *n submatrix located in the upper-left quadrant of the matrix. Given the initial configurations for q matrices, help Sean reverse the rows and columns of each matrix in the best possible way so that the sum of the elements in the matrix's upper-left quadrant is maximal.  Input : matrix = [[1, 2], [3, 4]] Output : 4 Input : matrix = [[112, 42, 83, 119], [56, 125, 56, 49], [15, 78, 101, 43], [62, 98, 114, 108]] Output : 119 + 114 + 56 + 125 = 414 Full Problem Description : Flipping the Matrix Problem Description   Here we can find solution using following pattern, So simply we have to find Max of same number of box like (1,1,1,1). And last