Skip to main content

Balanced Brackets HackerRank Solution in Java and Python with Explanation

Java and Python Solution for Balanced Brackets HackerRank Problem | Check opening and closing brackets match or not

Balanced Brackets HackerRank Solution in Java and Python with Explanation

Problem Description :

A bracket is considered to be any one of the following characters: (, ), {, }, [, or ].

Two brackets are considered to be a matched pair if the an opening bracket (i.e., (, [, or {) occurs to the left of a closing bracket (i.e., ), ], or }) of the exact same type. There are three types of matched pairs of brackets: [], {}, and ().

A matching pair of brackets is not balanced if the set of brackets it encloses are not matched. For example, {[(])} is not balanced because the contents in between { and } are not balanced. The pair of square brackets encloses a single, unbalanced opening bracket, (, and the pair of parentheses encloses a single, unbalanced closing square bracket, ].

By this logic, we say a sequence of brackets is balanced if the following conditions are met:

  1. It contains no unmatched brackets.
  2. The subset of brackets enclosed within the confines of a matched pair of brackets is also a matched pair of brackets.

Given n Strings of brackets, determine whether each sequence of brackets is balanced. If a string is balanced, return YES. Otherwise, return NO

Example 1 :

input : "{[()]}"
output : YES

Example 2 :

input : "{[(])}"
output : NO

Example 3 :

input : "{{[[(())]]}}"
output : YES

Example 4 :

input : "}][}}(}]{))]"
output : NO

So lets jump on code. First we will seen code in Java and then Python.

Solution 1 : Balanced Brackets Solution in Java

import java.io.*;
import java.math.*;
import java.security.*;
import java.text.*;
import java.util.*;
import java.util.concurrent.*;
import java.util.function.*;
import java.util.regex.*;
import java.util.stream.*;
import static java.util.stream.Collectors.joining;
import static java.util.stream.Collectors.toList;

class Result {

    public static String isBalanced(String s) {

        // Convert string to character array
        char[] array = s.toCharArray();
        
        List<Character> list = new ArrayList<>();

        // Return "NO" if starting bracket is closing bracket
        if (array[0] == ')' || array[0] == '}' || array[0] == ']') {
            return "NO";
        }
        
        for (int i = 0; i < array.length; i++) {
            if (array[i] != ')' && array[i] != '}' && array[i] != ']') {
                list.add(array[i]);
            } else if (list.size() == 0) {
                return "NO";
            } else {
                char lastBreacket = list.get(list.size()-1);
                if (lastBreacket == '(' && array[i] != ')') {
                    return "NO";
                } else if (lastBreacket == '{' && array[i] != '}') {
                     return "NO";
                } else if (lastBreacket == '[' && array[i] != ']') {
                     return "NO";
                } else {
                    list.remove(list.size()-1);
                }
            }
        }

        if (list.size() == 0) {
            return "YES";
        } else {
            return "NO";
        }
    }

}

public class Solution {
    public static void main(String[] args) throws IOException {
        BufferedReader bufferedReader = new BufferedReader(new InputStreamReader(System.in));
        BufferedWriter bufferedWriter = new BufferedWriter(new FileWriter(System.getenv("OUTPUT_PATH")));

        int t = Integer.parseInt(bufferedReader.readLine().trim());

        IntStream.range(0, t).forEach(tItr -> {
            try {
                String s = bufferedReader.readLine();

                String result = Result.isBalanced(s);

                bufferedWriter.write(result);
                bufferedWriter.newLine();
            } catch (IOException ex) {
                throw new RuntimeException(ex);
            }
        });

        bufferedReader.close();
        bufferedWriter.close();
    }
}

Solution Explanation :

  • Convert given string to character array.
  • If first character is closing bracket, then return "NO". (No need to go forward).
  • Traverse through character array.
    • If current bracket does not start with closing brackets, then store into characters list.
    • In else if condition, return "NO" if list size becomes 0 and array still contains brackets.
    • In else condition, get last bracket from list and check current array bracket match its closing brackets or not. If it is match then remove last bracket from list otherwise return "NO".
  • After for loop, return "YES" if list size is 0 otherwise return "NO".

Solution 2 : Balanced Brackets Solution in Python

def isBalanced(s):
    stack = []
    # map right bracket (key) to left bracket (value)
    right = {'}':'{',')':'(',']':'['}
    left = ['(','{','[']
    for c in s:
        # push all left brackets to the stack
        if c in left:
            stack.append(c)
        else:
            if len(stack) > 0 and stack[-1] == right[c]:
                # matches
                stack.pop()
            else:
                # doesn't match
                return 'NO'
    # if anything is still on the stack
    if len(stack) > 0:
        return 'NO'
    # made it through all tests
    return 'YES'

Solution Explanation :

  • Whenever an opening bracket appears, we push it onto the stack.
  • If a closing bracket appears and if it matches the opening bracket at the top of the stack, it means that the brackets are balanced and we pop the opening bracket out of the stack and continue analyzing the string.
  • If the closing bracket doesn't match the opening bracket at the top of the stack, we can infer that the string is not balanced, and we print NO.
  • After processing the string completely and if the stack is empty, the string is balanced, and we print YES, else, we print NO.


Other HackerRank Problem and Solution with Explanation :

 

 

 

 

Comments

Popular posts from this blog

Flipping the Matrix HackerRank Solution in Java with Explanation

Java Solution for Flipping the Matrix | Find Highest Sum of Upper-Left Quadrant of Matrix Problem Description : Sean invented a game involving a 2n * 2n matrix where each cell of the matrix contains an integer. He can reverse any of its rows or columns any number of times. The goal of the game is to maximize the sum of the elements in the n *n submatrix located in the upper-left quadrant of the matrix. Given the initial configurations for q matrices, help Sean reverse the rows and columns of each matrix in the best possible way so that the sum of the elements in the matrix's upper-left quadrant is maximal.  Input : matrix = [[1, 2], [3, 4]] Output : 4 Input : matrix = [[112, 42, 83, 119], [56, 125, 56, 49], [15, 78, 101, 43], [62, 98, 114, 108]] Output : 119 + 114 + 56 + 125 = 414 Full Problem Description : Flipping the Matrix Problem Description   Here we can find solution using following pattern, So simply we have to find Max of same number of box like (1,1,1,1). And ...

Plus Minus HackerRank Solution in Java | Programming Blog

Java Solution for HackerRank Plus Minus Problem Given an array of integers, calculate the ratios of its elements that are positive , negative , and zero . Print the decimal value of each fraction on a new line with 6 places after the decimal. Example 1 : array = [1, 1, 0, -1, -1] There are N = 5 elements, two positive, two negative and one zero. Their ratios are 2/5 = 0.400000, 2/5 = 0.400000 and 1/5 = 0.200000. Results are printed as:  0.400000 0.400000 0.200000 proportion of positive values proportion of negative values proportion of zeros Example 2 : array = [-4, 3, -9, 0, 4, 1]  There are 3 positive numbers, 2 negative numbers, and 1 zero in array. Following is answer : 3/6 = 0.500000 2/6 = 0.333333 1/6 = 0.166667 Lets see solution Solution 1 import java.io.*; import java.math.*; import java.security.*; import java.text.*; import java.util.*; import java.util.concurrent.*; import java.util.function.*; import java.util.regex.*; import java.util.stream.*; import static jav...