Skip to main content

How to Check Given LinkedList is Palindrom or Not? | Recursive and Two Pointer Approach with Explanation

Check Palindrome Linked List using Recursive and Two Pointer Approach in Java with Explanation

Check Palindrome Linked List using Recursive and Two Pointer Approach in Java with Explanation

Problem Description :

Given the head of a singly linked list, return true if it is a palindrome.

Example 1 :

Input : head = [1, 2, 2, 1]
Output : true

Example 2 :

Input : head = [1, 2, 3, 2, 1]
Output : true

Example 3 :

Input : head = [1, 2, 3, 4, 5, 6]
Output : false

Example 4 :

Input : head = [6, 5, 4, 4, 6, 5]
Output : false

Solution 1 : Find LinkedList is Palindrome or not using Recursion in Java

import java.util.Scanner;

public class PalindromeLinkedList {

    public static void main(String[] args) {
        
        Scanner sc = new Scanner(System.in);
        System.out.println("Enter Size of LinkedList");
        int size = sc.nextInt();
        
        System.out.println("Enter Data in LinkedList");
        
        // Creating CustomLinkedList object and storing Node
        CustomLinkedList list = new CustomLinkedList();
        for (int i = 0; i < size; i++) {
             list.insert(sc.nextInt());
        }
        
        System.out.println(checkPalindrom(list));
    }

    static Node nodeRef;
    static boolean checkPalindrom(CustomLinkedList list) {
        nodeRef = list.head;
        return isPalindrom(list.head);
    }
    
    static boolean isPalindrom(Node node) {
        if (node == null) {
            return true;
        }
        
        boolean ans = isPalindrom(node.next);
        boolean isEqual = node.value == nodeRef.value ? true : false;

        nodeRef = nodeRef.next;
        return ans && isEqual;
    }
}


 class Node {
    
    //Data in the current node
    int value;
    //Reference for the next node
    Node next;

    Node(int value) {
        this.value = value;
    }
}

 class CustomLinkedList {
    
    Node head;

    public void insert(int value) {
        Node newNode = new Node(value);
        
        if (head == null) {
            head = newNode;
        } else {
            Node n = head;
            while(n.next != null) {
                n = n.next;
            }
            n.next = newNode;
        }
    }
}

Solution Explanation :

  • First take reference of head in temporary node. So we can use while comparing nodes value.
  • Call recursive method isPalindrom() with reference of head node.  
  • In isPalindrom() method,
    • Create base case, If current node is null return true. It will use for get last node of LinkedList.
    • Call recursion function isPalindrom() and store answer in ans variable.
    • Check both side of value one by one and store ans in isEqual variable.
    • Store next value of node in nodeRef variable.
  • Return true if both ans and isEquals variable is true otherwise it will returns false.

Solution 2 : Find Given LinkedList is Palindrom or Not using Two Pointer Approach

private static boolean checkPalindrom(Node head, Node last) {

    Node slow = head;
    Node fast = head;
    Node reverse = null;

    while (fast != null && fast.next != null) {
        Node node = new Node(slow.value);

        // Reversing LinkedList from 0 to middle
        node.next = reverse;
        reverse = node;

        slow = slow.next;
        fast = fast.next.next;
    }

    // Used when LinkedList size is odd (ex. 3,5,7,...)
    if (fast != null) {
        slow = slow.next;
    }

    // Comparing values of first and second half
    while (slow != null) {
        if (slow.value != reverse.value) {
            return false;
        }

        slow = slow.next;
        reverse = reverse.next;
    }

    return true;
}

Solution Explanation :

  • Defining three Node references,
    • slow = It will traverse from start to mid Node of linked list. after that it will use for comparing values from mid to end with reversed list.
    • fast = It will traverse through entire linked list from start to end (It is used for get mid of Node of linked list).
    • reverse = It will reverse values from start to mid. (In linked list, only next pointer change for reversing).
  • In first while loop, reverse linked list from start to mid. (ex. list size = 8, mid = 4 | list size = 5, mid = 3)
  • Second while loop used only list size is odd (3,5,7,...). Here, assign next Node of mid to slow. (ex. list size = 7 , mid = 4 so we do not have to compare mid value to any other value).
  • In third while loop, compare reversed value (start to mid) with slow pointer (mid to end).
   

Comments

Popular posts from this blog

Plus Minus HackerRank Solution in Java | Programming Blog

Java Solution for HackerRank Plus Minus Problem Given an array of integers, calculate the ratios of its elements that are positive , negative , and zero . Print the decimal value of each fraction on a new line with 6 places after the decimal. Example 1 : array = [1, 1, 0, -1, -1] There are N = 5 elements, two positive, two negative and one zero. Their ratios are 2/5 = 0.400000, 2/5 = 0.400000 and 1/5 = 0.200000. Results are printed as:  0.400000 0.400000 0.200000 proportion of positive values proportion of negative values proportion of zeros Example 2 : array = [-4, 3, -9, 0, 4, 1]  There are 3 positive numbers, 2 negative numbers, and 1 zero in array. Following is answer : 3/6 = 0.500000 2/6 = 0.333333 1/6 = 0.166667 Lets see solution Solution 1 import java.io.*; import java.math.*; import java.security.*; import java.text.*; import java.util.*; import java.util.concurrent.*; import java.util.function.*; import java.util.regex.*; import java.util.stream.*; import static java.util.st

Flipping the Matrix HackerRank Solution in Java with Explanation

Java Solution for Flipping the Matrix | Find Highest Sum of Upper-Left Quadrant of Matrix Problem Description : Sean invented a game involving a 2n * 2n matrix where each cell of the matrix contains an integer. He can reverse any of its rows or columns any number of times. The goal of the game is to maximize the sum of the elements in the n *n submatrix located in the upper-left quadrant of the matrix. Given the initial configurations for q matrices, help Sean reverse the rows and columns of each matrix in the best possible way so that the sum of the elements in the matrix's upper-left quadrant is maximal.  Input : matrix = [[1, 2], [3, 4]] Output : 4 Input : matrix = [[112, 42, 83, 119], [56, 125, 56, 49], [15, 78, 101, 43], [62, 98, 114, 108]] Output : 119 + 114 + 56 + 125 = 414 Full Problem Description : Flipping the Matrix Problem Description   Here we can find solution using following pattern, So simply we have to find Max of same number of box like (1,1,1,1). And last