Skip to main content

How to find Factorials of Extra Long Number in Java | Factorial of BigInterger

Find Factorial of Extra Long Number | Factorial of BigInteger in Java | HackerRank Problem

Find Factorial of Extra Long Number | Factorial of BigInteger in Java

Problem Description :

Calculate and print the factorial of a given integer. 

The factorial of the integer n, written n!, is defined as:

n! = n * (n - 1) * (n - 2) * ... * 3 * 2 * 1

Example 1 :

n = 30 

ans = 265252859812191058636308480000000

Explanation = 30 * 29 * 28 * 27 * .... * 3 * 2 *1

Example 2 : 

n = 50

ans = 30414093201713378043612608166064768844377641568960512000000000000

We can not store large number in Long data type as well. So we need BigInteger for that. 

BigInteger class presents in java.math package. For use BigInteger we need to import math package first.

Checkout How we can divide and compute modulo of BigInteger in Java :

Lets solve long number factorial problem.

Solution 1 : Factorial of Extra long number in Java


import java.math.BigInteger;
import java.util.Scanner;

public class ExtraLongFactorials {

    public static void main(String[] args) {
        
        Scanner sc = new Scanner(System.in);
        System.out.println("Enter n");
        int n = sc.nextInt();

        factorial(n);
    }

    public static void extraLongFactorials(int n) {
        
        BigInteger
 factorial = BigInteger.ONE;

        for (int i = n; i > 0; i--) {
            factorial = factorial.multiply(BigInteger.valueOf(i));
        }
        
        System.out.println(factorial);
    }
}

Output :

n = 30
265252859812191058636308480000000

n = 50
30414093201713378043612608166064768844377641568960512000000000000

We can see that how large factorial of 30 and 50 is, clearly it is not possible to use long data type to store huge integer values. We need BigInteger Class to store such large numbers.

Lets see another solution with while loop.

 

Solution 2 : Find Factorial of BigInteger in Java


import
 java.math.BigInteger;
import java.util.Scanner;

public class ExtraLongFactorials {

    public static void main(String[] args) {
        
        Scanner sc = new Scanner(System.in);
        System.out.println("Enter n");
        int n = sc.nextInt();

        System.out.println(factorial(n));
        
    }
    
    public static void factorial(int n) {
        
        BigInteger factorial = BigInteger.ONE;
        
        while(n > 1){
            factorial = factorial.multiply(BigInteger.valueOf(n));
            n--;
        }
        
        System.out.println(factorial);

    }

}

 

RECOMMENDED ARTICLES :

 

 

 

 

 

 

 

Comments

Popular posts from this blog

Plus Minus HackerRank Solution in Java | Programming Blog

Java Solution for HackerRank Plus Minus Problem Given an array of integers, calculate the ratios of its elements that are positive , negative , and zero . Print the decimal value of each fraction on a new line with 6 places after the decimal. Example 1 : array = [1, 1, 0, -1, -1] There are N = 5 elements, two positive, two negative and one zero. Their ratios are 2/5 = 0.400000, 2/5 = 0.400000 and 1/5 = 0.200000. Results are printed as:  0.400000 0.400000 0.200000 proportion of positive values proportion of negative values proportion of zeros Example 2 : array = [-4, 3, -9, 0, 4, 1]  There are 3 positive numbers, 2 negative numbers, and 1 zero in array. Following is answer : 3/6 = 0.500000 2/6 = 0.333333 1/6 = 0.166667 Lets see solution Solution 1 import java.io.*; import java.math.*; import java.security.*; import java.text.*; import java.util.*; import java.util.concurrent.*; import java.util.function.*; import java.util.regex.*; import java.util.stream.*; import static java.util.st

Flipping the Matrix HackerRank Solution in Java with Explanation

Java Solution for Flipping the Matrix | Find Highest Sum of Upper-Left Quadrant of Matrix Problem Description : Sean invented a game involving a 2n * 2n matrix where each cell of the matrix contains an integer. He can reverse any of its rows or columns any number of times. The goal of the game is to maximize the sum of the elements in the n *n submatrix located in the upper-left quadrant of the matrix. Given the initial configurations for q matrices, help Sean reverse the rows and columns of each matrix in the best possible way so that the sum of the elements in the matrix's upper-left quadrant is maximal.  Input : matrix = [[1, 2], [3, 4]] Output : 4 Input : matrix = [[112, 42, 83, 119], [56, 125, 56, 49], [15, 78, 101, 43], [62, 98, 114, 108]] Output : 119 + 114 + 56 + 125 = 414 Full Problem Description : Flipping the Matrix Problem Description   Here we can find solution using following pattern, So simply we have to find Max of same number of box like (1,1,1,1). And last