Skip to main content

Find Peak Element from given Java Array with Explanation | O(log n) Time Complexity

Java code for finding peak element from Array | Linear and Binary Search | LeetCode

Find Peak Element from given Java Array with Explanation

Problem Description :

A peak element is an element that is strictly greater than its neighbors. 

Given a 0-indexed integer array nums, find a peak element, and return its index. If the array contains multiple peaks, return the index to any of the peaks.

Example 1 :

Input : [1, 2, 3, 1]
Output : 2
Explanation : 3 is peak element in given array so it should return index 2

Example 2 : 

Input : [1, 2, 1, 3, 5, 6, 4]
Output : 5
Explanation : Here in given array two peak elements are present, we can return any of them. 6 is peak element so return index 5

Example 3 :

Input = [5, 6, 8, 1, 3, 9, 10, 8, 7, 5]
Output : 6
Explanation : 10 is peak elements so return index 6

In given array, there can be multiple peak elements so we can return  any of them.

We can solve this problem using Linear search and Binary Search. Binary Search is optimal solution because its time complexity is O(log n).

Solution 1 : Find Peak Element from Array in Java using Linear approach

   
    import java.util.Scanner;
    
    public class FindPeakElement {
    
        public static void main(String[] args) {
           
            Scanner sc = new Scanner(System.in);
           
            System.out.println("Enter array size : ");
            int size = sc.nextInt();
    
            int[] array = new int[size];
           
            // Taking user inputs
            System.out.println("Enter array elements :");
            for (int i = 0; i < array.length; i++) {
                array[i] = sc.nextInt();
            }
           
            System.out.println(findPeakElementLinear(array));
    
        }
       
        public static int findPeakElementLinear(int[] nums) {
           
            int peak = 0;
            for (int i = 0; i < nums.length; i++) {
                if (i+1 < nums.length) {
                    if (nums[i] > nums[i+1]) {
                        peak = i;
                        break;
                    } else if (nums[i] < nums[i+1]) {
                        peak = i+1;
                    }
                }
            }
            return peak;
        }

    }
 

This approach gives O(n) time complexity. We can optimize this solution from linear way to binary search. 

Lets see optimal solution of this.

Solution 2 : Find Peak Element from Array in Java using Binary Search approach

    
    import java.util.Scanner;
    
    public class FindPeakElement {
    
        public static void main(String[] args) {
           
            Scanner sc = new Scanner(System.in);
           
            System.out.println("Enter array size : ");
            int size = sc.nextInt();
    
            int[] array = new int[size];
           
            // Taking user inputs
            System.out.println("Enter array elements :");
            for (int i = 0; i < array.length; i++) {
                array[i] = sc.nextInt();
            }
           
            System.out.println(findPeakElement(array));
    
        }
    
        public static int findPeakElement(int[] nums) {
           
            int start = 0;
            int end = nums.length-1;
           
            while (start < end) {
                int mid = (start + end) / 2;
               
                if (nums[mid] > nums[mid+1]) {
                    end = mid;
                } else {
                    start = mid+1;
                }
            }
            return start;
        }

    }


Solution Explanation :

  • First declare start and end, start value to 0 and end to length of given nums array.
  • Loop until start is less than end
    • Assign middle index of array to mid variable.
    • If mid element is greater than next of mid, then store mid element to end
    • else assign mid+1 to start.
  • return start

Output Explanation :

nums = [1 2 1 3 5 6 4]

  • start = 0, end = 6
  • 0 < 6 becomes true
    • mid = 3
    • nums[3] > nums[4] | 3 > 5 becomes false
    • start = 3 + 1 = 4
  • start = 4, end = 6, mid = 3
  • 4 < 6
    • mid = 5
    • 6 > 4 becomes true
      • end = 5
  • start = 4, end = 5, mid = 5
  • 4 < 5 
    • mid = 4
    • 5 > 6 becomes false
    • start = 5
  • start = 5, end = 5, mid = 4
  • 5 < 5 becomes false
  • return 5

This approach gives O(log n) time complexity. 

 

Other Articles you may like :


Comments

Popular posts from this blog

Plus Minus HackerRank Solution in Java | Programming Blog

Java Solution for HackerRank Plus Minus Problem Given an array of integers, calculate the ratios of its elements that are positive , negative , and zero . Print the decimal value of each fraction on a new line with 6 places after the decimal. Example 1 : array = [1, 1, 0, -1, -1] There are N = 5 elements, two positive, two negative and one zero. Their ratios are 2/5 = 0.400000, 2/5 = 0.400000 and 1/5 = 0.200000. Results are printed as:  0.400000 0.400000 0.200000 proportion of positive values proportion of negative values proportion of zeros Example 2 : array = [-4, 3, -9, 0, 4, 1]  There are 3 positive numbers, 2 negative numbers, and 1 zero in array. Following is answer : 3/6 = 0.500000 2/6 = 0.333333 1/6 = 0.166667 Lets see solution Solution 1 import java.io.*; import java.math.*; import java.security.*; import java.text.*; import java.util.*; import java.util.concurrent.*; import java.util.function.*; import java.util.regex.*; import java.util.stream.*; import static java.util.st

Flipping the Matrix HackerRank Solution in Java with Explanation

Java Solution for Flipping the Matrix | Find Highest Sum of Upper-Left Quadrant of Matrix Problem Description : Sean invented a game involving a 2n * 2n matrix where each cell of the matrix contains an integer. He can reverse any of its rows or columns any number of times. The goal of the game is to maximize the sum of the elements in the n *n submatrix located in the upper-left quadrant of the matrix. Given the initial configurations for q matrices, help Sean reverse the rows and columns of each matrix in the best possible way so that the sum of the elements in the matrix's upper-left quadrant is maximal.  Input : matrix = [[1, 2], [3, 4]] Output : 4 Input : matrix = [[112, 42, 83, 119], [56, 125, 56, 49], [15, 78, 101, 43], [62, 98, 114, 108]] Output : 119 + 114 + 56 + 125 = 414 Full Problem Description : Flipping the Matrix Problem Description   Here we can find solution using following pattern, So simply we have to find Max of same number of box like (1,1,1,1). And last